UNIT-I
8085 Microprocessor
Contents
•
General definitions

•
Overview of 8085 microprocessor

•
Overview of 8086 microprocessor

•
Signals and pins of 8086 microprocessor

The salient features of 8085 µp are:

•
It is a 8 bit microprocessor.

•
It is manufactured with N-MOS technology.

•
It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)

 memory locations through A0-A15.

•
The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 – AD7.

•
Data bus is a group of 8 lines D0 – D7.

•
It supports external interrupt request.

•
A 16 bit program counter (PC)

•
A 16 bit stack pointer (SP)

•Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

•
It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

•
It is enclosed with 40 pins DIP (Dual in line package).

Overview of 8085 microprocessor

8085 Architecture

•
Pin Diagram

•
Functional Block Diagram

[image: image1.jpg]
Instruction Set
8085 instruction set consists of the following instructions:

· Data moving instructions.

· Arithmetic - add, subtract, increment and decrement.

· Logic - AND, OR, XOR and rotate.

· Control transfer - conditional, unconditional, call subroutine, return from subroutine and restarts.

· Input/Output instructions.

· Other - setting/clearing flag bits, enabling/disabling interrupts, stack operations, etc.

Addressing mode
•
Register - references the data in a register or in a register pair.

Register indirect - instruction specifies register pair containing address, where

the data is located.

Direct, Immediate - 8 or 16-bit data.

advantages of 8086 over 8085 are :

1.pipelining is employed making the execution faster.
2.databus width increased to 16 bits
3.higher memory of 1MB.
4.some instructions such as MUL or DIV are available for multiplication and division.
5.increased instruction set making the programming easier.

8086 Microprocessor
•It is a 16-bit µp.

•8086 has a 20 bit address bus can access up to 220 memory locations (1 MB) .

•It can support up to 64K I/O ports.

•It provides 14, 16 -bit registers.

•It has multiplexed address and data bus AD0- AD15 and A16 – A19.

•It requires single phase clock with 33% duty cycle to provide internal timing.

•8086 is designed to operate in two modes, Minimum and Maximum.

•It can prefetches upto 6 instruction bytes from memory and queues them in order to

speed up instruction execution.

•It requires +5V power supply.

•A 40 pin dual in line package

Architecture of 8086

•8086 has two blocks BIU and EU.

•The BIU performs all bus operations such as instruction fetching, reading and writing

operands for memory and calculating the addresses of the memory operands. The

instruction bytes are transferred to the instruction queue.

•EU executes instructions from the instruction system byte queue.

•Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance.

•BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

•EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register,

Flag register.

BUS INTERFACR UNIT:
• It provides a full 16 bit bidirectional data bus and 20 bit address bus.

•The bus interface unit is responsible for performing all external bus operations.

[image: image2.jpg]
Specifically it has the following functions:

 •Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and

 Bus control.

 •The BIU uses a mechanism known as an instruction stream queue to implement a

 pipeline architecture.
•This queue permits prefetch of up to six bytes of instruction code. When ever the queue

of the BIU is not full, it has room for at least two more bytes and at the same time the EU

is not requesting it to read or write operands from memory, the BIU is free to look ahead

in the program by prefetching the next sequential instruction.

•These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the

BIU fetches two instruction bytes in a single memory cycle.

•After a byte is loaded at the input end of the queue, it automatically shifts up through the

FIFO to the empty location nearest the output.

•The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting access

to operand in memory.

•These intervals of no bus activity, which may occur between bus cycles are known as

Idle state.
•If the BIU is already in the process of fetching an instruction when the EU request it to

read or write operands from memory or I/O, the BIU first completes the instruction fetch

bus cycle before initiating the operand read / write cycle.

•The BIU also contains a dedicated adder which is used to generate

the 20bit physical address that is output on the address bus. This address is formed med by

combining the current contents of the code segment CS register and the current contents

of the instruction pointer IP register.

•The BIU is also responsible for generating bus control signals such as those for memory

read or write and I/O read or write.

EXECUTION UNIT
 The Execution unit is responsible for decoding and executing all instructions.

•The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to perform the

read or write bys cycles to memory or I/O and perform the operation specified by the

instruction on the operands.

•During the execution of the instruction, the EU tests the status and control flags and

updates them based on the results of executing the instruction.

•If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted

to top of the queue.

•When the EU executes a branch or jump instruction, it transfers control to a location

corresponding to another set of sequential instructions.

•Whenever this happens, the BIU automatically resets the queue and then begins to fetch instructions from this new location to refill the queue
Prof. Krishna Kumar

SPECIAL FUNCTIONS OF GENERAL PURPOSE REGISTERS
Accumulator register consists of 2 8-bit registers AL and AH, which can be combined together and used as a 16-bit register AX. AL in this case contains the low-order byte of the word, and AH contains the high-order byte. Accumulator can be used for I/O operations and string manipulation.

Base register consists of 2 8-bit registers BL and BH, which can be combined together and used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH

contains the high-order byte. BX register usually contains a data pointer used for based, based indexed or register indirect addressing.

Count register consists of 2 8-bit registers CL and CH, which can be combined together and used as a 16-bit register CX. When combined, CL register contains the low-order byte of the word, and CH contains the high-order byte. Count register can be used as a counter in string manipulation and shift/rotate instructions.

Data register consists of 2 8-bit registers DL and DH, which can be combined together and used as a 16-bit register DX. When combined, DL register contains the low-order byte of the word, and DH contains the high-order byte. Data register can be used as a port number in I/O operations. In integer 32-bit multiply and divide instruction the DX register contains high-order word of the initial or resulting number.

SPECIAL FUNCTIONS OF SPECIAL PURPOSE REGISTERS

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect addressing, as well as a destination data address in string manipulation instructions.
The si and di registers (Source Index and Destination Index) have some special purposes as well. You may use these registers as pointers (much like the bx register) to indirectly access memory. You'll also use these registers with the 8086 string instructions when processing character strings.

The bp register (Base Pointer) is similar to the bx register. You'll generally use this register to access parameters and local variables in a procedure.

The sp register (Stack Pointer) has a very special purpose - it maintains the program stack. Normally, you would not use this register for arithmetic computations. The proper operation of most programs depends upon the careful use of this register.

SEGMENTATION:
Since address registers and address operands are only 16 bits they can only address 64k bytes. In order toaddress the 20-bit address range of the 8086, physicaladdresses (those that are put on the address bus)are always formed by adding the values of one of the

instruction is executed? The use of segment registers reduces the size ofpointers to 16 bits.

This reduces the code size but also restricts the addressing range of a pointer to

64k bytes. Performing address arithmetic within data structures larger than 64k is awkward. This is the biggest drawback of the 8086 architecture. We will restrict ourslves to short programs where all of the code, data and stack are placed into thesame 64k segment (i.e. CS=DS=SS).

Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1 MB of processor memory these 4 segments are located the processor uses four segment registers:
Memory
•Program, data and stack memories occupy the same memory space. As the most of the

processor instructions use 16-bit pointers the processor can effectively address only 64

KB of memory.

• To access memory outside of 64 KB the CPU uses special segment registers to specify

where the code, stack and data 64 KB segments are positioned within 1 MB of memory

(see the "Registers" section below).

•16-bit pointers and data are stored as:

address: low-order byte

address+1: high-order byte

•Program memory - program can be located anywhere in memory. Jump and call

instructions can be used for short jumps within currently selected 64 KB code segment,

as well as for far jumps anywhere within 1 MB of memory.

•All conditional jump instructions can be used to jump within approximately +127 to -

127 bytes from current instruction.

•Data memory - the processor can access data in any one out of 4 available segments,

which limits the size of accessible memory to 256 KB (if all four segments point to

different 64 KB blocks).

•Accessing data from the Data, Code, Stack or Extra segments can be usually done by

prefixing instructions with the DS:, CS:, SS: or ES: (some registers and instructions by

default may use the ES or SS segments instead of DS segment).

•Word data can be located at odd or even byte boundaries. The processor uses two

memory accesses to read 16-bit word located at odd byte boundaries. Reading word data

from even byte boundaries requires only one memory access.

•Stack memory can be placed anywhere in memory. The stack can be located at odd

memory addresses, but it is not recommended for performance reasons (see "Data

Memory" above).

Reserved locations:

•0000h - 03FFh are reserved for interrupt vectors. Each interrupt vector is a 32-bit pointer

in format segment: offset.

•FFFF0h - FFFFFh - after RESET the processor always starts program execution at the

FFFF0h address.

segment registers to the 16-bit address to form a 20-bit address.
The segment registers themselves only contain themost-significant 16 bits of the 20-bit value that iscontributed by the segment registers. The least significantfour bits of thesegment address are alwayszero.
By default, the DS (data segment) is used fordata transfer instructions (e.g. MOV), CS(codesegment) is used with control transfer instructions(e.g. JMP or CALL), and SS is used with the stackpointer (e.g. PUSH or to save/restore addresses duringCALL/RET or INT instructions).
Exercise: If DS contains 0100H, what address will be written by the instruction MOV [2000H],AL? If CX contains 1122H, SP contains 1234H, and SS contains 2000H, what memory values will change and what will be their values when the PUSH CX

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions. The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program data. By default, the processor assumes that the DI register references the ES segment in string manipulation instructions. ES register can be changed directly using POP and LES instructions.

It is possible to change default segments used by general and index registers by prefixing instructions with a CS, SS, DS or ES prefix.

8086 FLAG REGISTER
Flags is a 16-bit register containing 9 1-bit flags:

· Overflow Flag (OF) - set if the result is too large positive number, or is too small negative number to fit into destination operand.
· Direction Flag (DF) - if set then string manipulation instructions will auto-decrement index registers. If cleared then the index registers will be auto-incremented.
· Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.
· Single-step Flag (TF) - if set then single-step interrupt will occur after the next instruction.

· Sign Flag (SF) - set if the most significant bit of the result is set.

· Zero Flag (ZF) - set if the result is zero.

· Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the AL register.

· Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the result is even.

Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit during last result calculation
UNIT-II
ADDRESSING MODES OF 8086:

Implied - the data value/data address is implicitly associated with the instruction.

· Direct - the instruction operand specifies the memory address where data is located.

 •Register indirect - instruction specifies a register containing an address, where data is

located. This addressing mode works with SI, DI, BX and BP registers.

•Register - references the data in a register or in a register pair.

•Immediate - the data is provided in the instruction.

 •Based :- 8-bit or 16-bit instruction operand is added to the contents of a base register

 (BX or BP), the resulting value is a pointer to location where data resides.

 •Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an index

 register (SI or DI), the resulting value is a pointer to location where data resides

 •Based Indexed :- the contents of a base register (BX or BP) is added to the contents ofhan index register (SI or DI), the resulting value is a pointer to location where data resides.
 •Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the

 contents of a base register (BX or BP) and index register (SI or DI), the resulting value is

 a pointer to location where data resides.
 INSTRUCTION SET OF 8086:

DATA TRANSFER INSTRUCTIONS

GENERAL – PURPOSE BYTE OR WORD TRANSFER INSTRUCTIONS:

MOV

PUSH

POP

XCHG

XLAT

SIMPLE INPUT AND OUTPUT PORT TRANSFER INSTRUCT

IN

OUT

SPECIAL ADDRESS TRANSFER INSTRUCTIONS

LEA

LDS

LES

FLAG TRANSFER INSTRUCTIONS:

LAHF

SAHF

PUSHF

POPF

ADITION INSTRUCTIONS:

ADD

ADC

INC

AAA

DAA

SUBTSUBTRACTION INSTRUCTIONS:

SUB

SBB

DEC

NEG

CMP

AAS

DAS

MULTIPLICATION INSTRUCTIONS:

MUL

IMUL

AAM

DIVISION INSTRUCTIONS:

DIV

IDIV

AAD

CBW

CWD

BIT MANIPULATION INSTRUCTIONS

LOGICAL INSTRUCTIONS:

NOT

AND

OR

XOR

TEST

SHIFT INSTRUCTIONS:

SHL / SAL

SHR

SAR

PROGRAM EXECUTION TRANSFER INSTRUCTIONS

UNCONDITIONAL TRANSFER INSTRUCTIONS:

CALL

RET

JMP

CONDITIONAL TRANSFER INSTRUCTIONS:

JA / JNBE

JAE / JNB

JB / JNAE

JBE / JNA

JC

JE / JZ

JG / JNLE

JGE / JNL

JL / JNGE

JLE / JNG

rof. Krishna JNC

JNE / JNZ

JNO

JNP / JPO

JNS

JO

JP / JPE

JS

ITERATION CONTROL INSTRUCTIONS:

LOOP

LOOPE / LOOPZ

LOOPNE / LOOPNZ

JCXZ

INTERRUPT INSTRUCTIONS:

INT

INTO

IRET
PROCESS CONTROL INSTRUCTIONS
FLAG SET / CLEAR INSTRUCTIONS:

STC

CLC

CMC

STD

CLD

STI

CLI

EXTERNAL HARDWARE SYNCHRONIZATION INSTRUCTIONS:

HLT

WAIT

ESC

LOCK

NOPInstruction Description
AAA Instruction - ASCII Adjust after Addition

AAD Instruction - ASCII adjust before Division

AAM Instruction - ASCII adjust after Multiplication

AAS Instruction - ASCII Adjust for Subtraction

ADC Instruction - Add with carry.

ADD Instruction - ADD destination, source

AND Instruction - AND corresponding bits of two operands

Example

Prof. Krishna Kumar

AAA Instruction -AAA converts the result of the addition of two valid unpacked BCD

digits to a valid 2-digit BCD number and takes the AL register as its implicit operand.

Two operands of the addition must have its lower 4 bits contain a number in the range

from 0-9.The AAA instruction then adjust AL so that it contains a correct BCD digit. If

the addition produce carry (AF=1), the AH register is incremented and the carry CF and

auxiliary carry AF flags are set to 1. If the addition did not produce a decimal carry, CF

and AF are cleared to 0 and AH is not altered. In both cases the higher 4 bits of AL are

cleared to 0.

AAA will adjust the result of the two ASCII characters that were in the

range from 30h (“0”) to 39h(“9”).This is because the lower 4 bits of those character fall

in the range of 0-9.The result of addition is not a ASCII character but it is a BCD digit.

Example:
MOV AH,0 ;Clear AH for MSD
MOV AL,6 ;BCD 6 in AL
ADD AL,5;Add BCD 5 to digit in AL
AAA

;AH=1, AL=1 representing BCD 11.
AAD Instruction -

ADD converts unpacked BCD digits in the AH and AL

register into a single binary number in the AX register in preparation for a division

operation.

Before executing AAD, place the Most significant BCD digit in

the AH register and Last significant in the AL register. When AAD is executed, the two

BCD digits are combined into a single binary number by setting AL=(AH*10)+AL and

clearing AH to 0.

 Microprocessors and Microcontrollers

Example:
MOV AX,0205h
AAD

;The unpacked BCD number 25
;After AAD , AH=0 and
;AL=19h (25)

Prof. Krishna Kumar

After the division AL will then contain the unpacked BCD quotient and

AH will contain the unpacked BCD remainder.

Example:
;AX=0607 unpacked BCD for 67 decimal
;CH=09H
AAD
DIV CH

;Adjust to binary before division
;AX=0043 = 43H =67 decimal
;Divide AX by unpacked BCD in CH
;AL = quotient = 07 unpacked BCD
;AH = remainder = 04 unpacked BCD
AAM Instruction - AAM converts the result of the multiplication of two valid

unpacked BCD digits into a valid 2-digit unpacked BCD number and takes AX as an

implicit operand.

To give a valid result the digits that have been multiplied must be

in the range of 0 – 9 and the result should have been placed in the AX register. Because

both operands of multiply are required to be 9 or less, the result must be less than 81 and

thus is completely contained in AL.

AAM unpacks the result by dividing AX by 10, placing the quotient (MSD) in AH and

the remainder (LSD) in AL.

Example:
MOV AL, 5
MOV
MUL
AAM

BL, 7
BL
;Multiply AL by BL , result in AX
;After AAM, AX =0305h (BCD 35)
AAS Instruction - AAS converts the result of the subtraction of two valid

unpacked BCD digits to a single valid BCD number and takes the AL register as an

implicit operand.

 The two operands of the subtraction must have its lower 4 bit contain

number in the range from 0 to 9 .The AAS instruction then adjust AL so that it contain a

correct BCD digit.

MOV AX,0901H
;BCD 91
SUB AL, 9
;Minus 9
 Microprocessors and Microcontrollers

AAS
SUB AL, BL
AAS
SUB AL, BL
AAS
ADD Instruction
-

; Give AX =0802 h (BCD 82)
(a)
;AL =0011 1001 =ASCII 9
;BL=0011 0101 =ASCII 5
;(9 - 5) Result :
;AL = 00000100 = BCD 04,CF = 0
;Result :
;AL=00000100 =BCD
04
;CF = 0 NO Borrow required
(b)
;AL = 0011 0101 =ASCII 5
;BL = 0011 1001 = ASCII 9
;(5 - 9) Result :
;AL = 1111 1100 = - 4
; in 2’s complement CF = 1
;Results :
;AL = 0000 0100 =BCD 04
;CF = 1 borrow needed .
These instructions add a number from source to a number

Prof. Krishna Kumar

from some destination and put the result in the specified destination. The add with carry

instruction ADC, also add the status of the carry flag into the result.

 The source and destination must be of same type , means

they must be a byte location or a word location. If you want to add a byte to a word, you

must copy the byte to a word location and fill the upper byte of the word with zeroes

before adding.

EXAMPLE:
ADD AL,74H
ADC CL,BL
ADD DX, BX

;Add immediate number 74H to content of AL
;Add contents of BL plus
;carry status to contents of CL.
;Results in CL
;Add contents of BX to contents
;of DX
 ADD

DX, [SI]

;Add word from memory at
;offset [SI] in DS to contents of DX
icroprocessors and Microcontrollers

 ; Addition of Un Signed numbers

Prof. Krishna Kumar

ADD CL, BL ;CL = 01110011 =115 decimal
;+ BL = 01001111 = 79 decimal
;Result in CL = 11000010 = 194 decimal
; Addition of Signed numbers
 ADD CL, BL ;CL = 01110011 = + 115 decimal
;+ BL = 01001111 = +79 decimal
;Result in CL = 11000010 = - 62 decimal
 ; Incorrect because result is too large to fit in 7 bits.
AND Instruction
-

This Performs a bitwise Logical AND of two operands. The

result of the operation is stored in the op1 and used to set the flags.

AND op1, op2
 To perform a bitwise AND of the two operands, each bit of the result is

set to 1 if and only if the corresponding bit in both of the operands is 1, otherwise the bit

in the result I cleared to 0 .

AND BH, CL

;AND byte in CL with byte in BH
;result in BH
AND BX,00FFh;AND word in BX with immediate
;00FFH. Mask upper byte, leave
;lower unchanged
AND CX,[SI]

; AND word at offset [SI] in data
;segment with word in CX
;register . Result in CX register .
;BX = 10110011 01011110

